LNS & RUSF in transdisciplinary nutrition programming: the Haiti experience

Lora Iannotti, Ph.D.
Brown School, Washington University in St. Louis
FSN Network Nutrition & Food Technology Task Force
November 4, 2015
Presentation outline

1) Introduction: Transdisciplinary Nutrition
 a.) WHO Framework for Stunted Growth & Development

2) LNS & RUSF: Research in Haiti
 a.) Nutributter: complementary food security
 b.) VitaMamba: school feeding

3) Conclusions: Integrated Nutrition Programming
 a.) Water & microbiome
 b.) Anemia & child development
WHO Framework (Stewart et al. *MCN* 2013)
LNS & RUSF RESEARCH IN HAITI
Haiti: context

• History
 – Occupation, dependencies → weakened healthcare system
 – Major earthquake Jan 2010
 – Cholera & widespread diarrhea

• Rapid urbanization and poverty
 – >50% population live urban areas; 3.9 % per year
 – 80% in poverty (less than $2); 54% in abject poverty (<$1)
 – 10% land with permanent crops; deforestation; dependency on food imports

• Nutrition (DHS 2012)
 – 20.9% stunted, 11.4% underweight, 5.1% wasted
 – 65% of infants 6-59 mo were anemic; and 16.9% of children 6-59 mo live in HH with iodized salt
 – 23% 4 food groups/d; 7% eggs; 18% meat or fish

• Infection & WASH
 – 21% acute diarrhea; leading cause of child death.
 – 80% without access to sanitation
Cap Haitien
Fortified peanut butter paste

• Prevention, not treatment!
 – Intervene early to prevent stunting
 – Micronutrient nutrition in school age children

• Poverty intervention
 – high quality food + education
 – Local peanut farmers & economic development
COMPLEMENTARY FOOD SECURITY: NUTRIBUTTER TRIAL
Partners & Funders

Funders:
- Bill & Melinda Gates Foundation to FHI 360, through the Alive & Thrive Small Grants Program managed by UC Davis;
- World Bank;
- World Food Program;
- Inter-American Development Bank;
- World Food Program;
Objectives

To test the efficacy of a small-quantity lipid-based supplement (LNS), Nutributter® (NB), delivered within an integrated package of services (IP) on promoting linear growth, over time

• improve complementary feeding practices in poor urban context

• examine effects of NB on infant and young child feeding (IYCF) practices
Study Design – mixed methods

• **RCT & impact evaluation**
 - Control, 3-mo NB, 6-mo NB
 - Followed monthly for anthropometry, morbidity, and development outcomes
 - Sustained growth effect → 6 mo post-intervention

• **Qualitative research & process evaluation**
 - In-depth interviews, matrix scoring, focus groups, observations, etc.
 - Logic model framework

• **Geospatial analyses**
 - Handheld Global Positioning System (GPS) units to map (n=150) of households, water sources, sanitation, markets, health service providers, churches
Trial profile

RCT
*Recruited and screened (n=709)
* Enrolled and randomized (n=589)

- **Group 1**
 - Control group (n=191)

- **Group 2**
 - Nutributter 3 mo (n=196)

- **Group 3**
 - Nutributter 6 mo (n=202)

Monthly follow-up visits: → 6 months

Intervention Period (6 mo)

- 48 losses to follow-up
 - Control (n=144)

- 70 losses to follow-up
 - NB 3 mo (n=126)

- 52 losses to follow-up
 - NB 6 mo (n=150)

POST-Intervention (6 mo)

Qualitative research & process evaluation

GIS analyses
Qualitative Research
Intervention: Nutributter®

Ingredients: peanut paste, sugar, vegetable fat, dry skimmed milk powder, maltodextrines, whey, vitamin and mineral pre-mix, emulsifier
Interventions
MOH Integrated Package

• Integrated Management of Childhood Illness (IMCI)
 – Health education: community health agents provide information at clinic & rally posts
 – Vaccinations
 – Vitamin A supplementation
 – Growth monitoring & promotion
 – Reproductive health
RESULTS
Growth effects – longitudinal regression

<table>
<thead>
<tr>
<th></th>
<th>3-mo NB vs. control</th>
<th>6-mo NB vs. control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadj β (SE)</td>
<td>P</td>
</tr>
<tr>
<td>At 6 mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAZ</td>
<td>-0.10 (0.05)</td>
<td>0.06</td>
</tr>
<tr>
<td>WAZ</td>
<td>0.02 (0.05)</td>
<td>0.65</td>
</tr>
<tr>
<td>At 12 mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAZ</td>
<td>-0.09 (0.05)</td>
<td>0.06</td>
</tr>
<tr>
<td>WAZ</td>
<td>0.03 (0.05)</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Public health: entire distribution shifted

Kernel density estimate

- Group 1: Control
- Group 2: NB for 3 mo
- Group 3: NB for 6 mo

kernel = epanechnikov, bandwidth = 1.4094
NB effects on IYCF

• Increased dietary diversity 0.23 ±0.07 SE (P<0.001)

• ↓ BF frequency 1.17 ±0.25 SE (P<0.001)

• ↑ water (84%) & sugar drinks (51%)

• Vitamin A supplementation
 – VAS in last 6 mo (99.3%)
 – 3-4 doses
 – 80% in NB groups > upper level
NB effects on IYCF

• Increased dietary diversity 0.23 ±0.07 SE (P<0.001)

• ↓ BF frequency 1.17 ±0.25 SE (P<0.001)

• ↑ water (84%) & sugar drinks (51%)

• Vitamin A supplementation
 – VAS in last 6 mo (99.3%)
 – 3-4 doses
 – 80% in NB groups >upper level
Implications

• Small-quantity LNS
 – NB for 6+ mo from 6-11 mo to promote linear growth
 – Offer NB with IMCI, but re-visit VAS protocols

• Deliver targeted IYCF messages
 – Breastfeeding: reduce poverty stigma, continued breastfeeding
 – Complementary feeding: re-enforce the mixing with other foods, safe drinking water consumption

• Research: next steps
 – Transdisciplinary approaches – public health, anthropology, engineering, and genomic sciences
Acknowledgements

Washington University
PI: Dr. Lora Iannotti; Study Coordinator: Sherlie Jean-Louis Dulience; Qualitative Research: Dr. Carolyn Lesorogol; GPS/GIS research: Andrea Spray
Study Team: Judith Francois, Saminetha Joseph, Jamie Green, Lucie Marie Antenor, Colleen Smith, Ethnie Paul

Konbit Sante
Dr. Nate Nickerson, Youseline Telmaque, Josaime St-JeanTezita Negussie

MSPP
Dr. Joseline Mahrone, Dr. Anne-Marie Desormeaux, Ms. Ina Jasmin

Edesia/Meds & Food for Kids (MFK)
Maria Kasparian, Nicole Henretty, Patricia Wolff, Tom Stehl, Jamie Rhoads

Funding Support
Alive & Thrive Small Grants Program, World Bank, World Food Programme
... the next 3,000 days

- **Brain development** – prefrontal cortex for higher cognitive functions; synaptogenesis and pruning; and neurogenesis in hippocampus (Grantham-McGregor et al. 2007)

- **Micronutrient deficiencies** - 20-30% of school-aged children have deficiencies in iron, iodine, zinc, and vitamin A (Best et al. 2011)
 - Haiti: 73% were anemic; 14% were stunted; 9.1% thin; and low % fat mass boys (8%) and girls (12.5%)

- **School feeding programs** - largest investments in public food programs globally (Lentz & Barrett 2013)
 - Potential for local agriculture development & nutrition impacts (Iannotti et al. 2013)
Mamba School Feeding Project

- McGovern-Dole International Food for Education and Child Nutrition
 - Micronutrient-fortified food aid products pilot

- Partners: Washington University, Edesia, National Soybean Research Laboratory, Ministry of Education/Haiti
Design & Methods

• Cluster-randomized controlled trial (quasi-experimental design)
 – Formative research/school profiles used to collect SES and nutrition to help match schools

• Sample & comparison groups (6 schools):
 – 1,200 school aged children 3-13 years
 – 1) control; 2) Tablet Sereyal (unfortified biscuit); 3) Mamba

• Impact & Process Evaluation
 – Impact outcomes – anemia, BIA, anthropometry, school attendance
 – Process outcomes – food acceptability, functionality, feasibility
High anemia prevalence, with limited RUSF impacts in urban context.
Gambia (5-13 yrs): girls (17-18%), boys (11-14%)
U.S. (5-18 yr): girls (15-24%), boys (14-18%)
Germany (3-18 yr): girls (18-20%), boys (15-20%)
Importance of body fat

• Brain development and metabolism (Murray et al. 2012)

• Thinnness in school children associated with ↑infectious disease, anemia, impaired cognitive/motor development (Heath & Taylor 2012)

• White adipose tissue – immunity, reproduction, and glucose/lipid metabolism; Brown adipose – regulates body temperature (Fruhbeck et al. 2013)
Mamba increases BMIz, fat mass, & %fat mass

| Table 5: Longitudinal regression models of intervention effects in Haitian school children |
|---------------------------------|---------------------------------|---------------------------------|
| | BMI z score¹ | Fat mass,² kg | Fat mass,² % |
| | Group effect (n = 2329) | Mamba effect (n = 1479) | Group effect (n = 2460) | Mamba effect (n = 1565) |
| | Coefficient ± SEE | P | Coefficient ± SEE | P |
| Group effect (Mamba = 3; | 0.12 ± 0.03 | <0.001 | 0.21 ± 0.06 | 0.001 |
| Tablet Yo = 2; control = 1)² | | | 0.64 ± 0.13 | <0.001 |
| Mamba effect (Mamba = 2; | | | 1.28 ± 0.27 | <0.001 |
| control = 1)³ | | | 0.25 ± 0.06 | 0.002 |
| | Coefficient ± SEE | P | 0.45 ± 0.14 | 0.23 |
| | 0.25 ± 0.06 | <0.001 | 0.24 | <0.001 |
| | 1.28 ± 0.27 | <0.001 | 0.23 | <0.001 |
| | 177.17 | <0.001 | 403.82 | <0.001 |
| | 0.07 | 0.08 | 0.15 | 0.14 |
| | 130.00 | 0.14 | 229.66 | 0.23 |
| | 403.82 | 0.15 | 229.66 | 0.23 |
| | 0.24 | 0.14 | 732.41 | <0.001 |
| | 319.00 | 0.24 | 431.31 | <0.001 |
| | 732.41 | 0.23 | | |
| | 431.31 | | | |

¹ Generalized least squares regression with random effects adjusted for age of the child, maternal BMI, monthly income, and school cluster.

² Generalized least squares regression with random effects adjusted for age of the child, sex of the child, maternal BMI, monthly income, and school cluster.

³ A separate model was generated to examine the Mamba effect compared to control only, excluding the Tablet Yo group.

Iannotti et al. J. of Nutr 2015
Acknowledgements

Washington University
PI: Dr. Lora Iannotti; Study Coordinator: Jacques Raymond Delnatus
Study Team: Windy Previl, Violette Debelma, Herlande Duvot, Youdeline Cherenfant, Belzina Florestal, Marie Mercie Napoleon, Priscaelle Marvina Previl, Guyvens St-Preux, and Dieumira Tibe.
Students: Susan Vorkoper, Jaime Bodden, Amanda Maust, Rachel Smidt

Meds & Foods for Kids (MFK)
Patricia Wolff,
Edesia
Nicole Henretty, Maria Kasparian
MSPP
Dr. Joseline Mahrone, Dr. Anne-Marie Desormeaux, Ms. Ina Jasmin
National Soybean Research Laboratory
Marilyn Nash, Courtney Tamimie, Bridget Owen

Funding Support
United States Department of Agriculture (USDA)
Foreign Agricultural Service Micronutrient Fortified Food Aid Products program FFE-521-2012/034-00.
Conclusions

INTEGRATED NUTRITION PROGRAMMING
Evaluation of Environmental Contaminants Affecting Water Quality in Haiti

Zorimar Rivera-Núñez, Ph.D.
Brown School
Public Health Program

Co-Principal Investigators:

Lora L. Iannotti, Ph.D.
Brown School, Public Health Program

Daniel E. Giammar, Ph.D., P.E.
Department of Energy, Environmental and Chemical Engineering

Haiti Collaborators: Université Publique du Nord au Cap Haïtien

WashU Students:
Zezhen Pan (EECE)
Roger Wong (Brown School)
Anemia

• **Blood disorder**
 – Reduced concentration of hemoglobin in the blood
 – Consequences: weakness, fatigue; compromised cognitive and physical development in young children, poor birth outcomes in pregnant women, and in severe cases, increased risk of mortality in certain populations (Hoffbrand et al 2006)

• **1.62 billion people (95% CI: 1.50-1.74 billion)**
 – 64.8 million disability adjusted life years (DALYs).

ANEMIA CAUSES
• *nutritional deficiencies* (iron, vitamin A, vitamin B\(_{12}\), folate, riboflavin, and copper);
• *infection* (malaria, helminths, tuberculosis, HIV);
• *chronic disease* (cancers);
• *blood loss* (hemorrhage during delivery, injury);
• *hemoglobinopathies* (thalassemia, sickle cell anemia)
Pathways: from nutrition to child development

- **Nutrition:**
 - Stunting
 - Micronutrient deficiencies

- **Physical activity & growth**

- **Illness**

- **Brain development & function**

- **Caregiver interactions**

- **Environment interactions**

- **Sensori-motor**

- **Social-emotional**

- **Cognitive-language**
Conclusions

- Limiting nutrient deficiencies
 - LNS, RUSF (VitaMamba) early and do no harm ethic
 - Improve diet quality

- Prevention strategies
 - 1,000 days (IYCF, maternal nutrition)
 - 3,000 days (development, body comp)

- Integrated programming depending on context
 - WASH
 - Poverty alleviation
 - Agriculture
 - Education