Assessment of African Indigenous Vegetables in Zambia and Malawi

Dane Fredenburg, CRS
Chief of Party - UBALE
The story of *denje*

Scientific Name
denje = *Corchorus olitorius*

Nutrients:
- Beta-carotene: *extremely high*
- vitamin E: *medium*
- riboflavin: *high*
- folic acid: *extremely high*
- ascorbic acid: *extremely high*
- calcium: *medium to high*
- iron: *high to extremely high*
- protein: 4.5%

Source:
(AVRDC 2015: http://avrdc.org/jute-mallow-corchorus-olitorius/)
Background

• Key terminology
 – African Indigenous Vegetables (AIV)
 – African Leafy Vegetables (ALV)
 – Wild Edible Plants (WEP)
 – Underutilized/Neglected/Orphan Crops
 – Traditional/native/local foods
 – Scientific vs. traditional classification systems

• Cultural significance
 – Closely linked to food culture, identity
 – Alimentary traditions (Towns et al. 2013)

Background

- Agricultural & environmental considerations
 - 75% of world’s food generated from 12 plant & 5 animal species (FAO 1999)
 - Sub-Saharan Africa has ~ 40,000 species in which 1000 are vegetables (Maundu et al. 2009)
 - Adapted to local conditions

- Nutritional considerations
 - AIVs richer than exotics in protein, vitamins, iron & other nutrients (Yang & Keding 2009)
 - Few countries have inventories of AIV diversity or consumption patterns

Monetary value of AIVs

Volume and value of annual sales for three most important AIVs to consumers by retailers

(Weinberger and Pichop 2009)

<table>
<thead>
<tr>
<th>Country</th>
<th>n</th>
<th>Total volume (kg)</th>
<th>Average volume (kg) per retailer</th>
<th>Average price (US$/kg)</th>
<th>Total Turnover (US$)</th>
<th>Average annual turnover per retailer (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>145</td>
<td>656,602</td>
<td>4528</td>
<td>0.61</td>
<td>401,578</td>
<td>2,769</td>
</tr>
<tr>
<td>Ivory Coast</td>
<td>140</td>
<td>99,877</td>
<td>713</td>
<td>0.54</td>
<td>53,544</td>
<td>382</td>
</tr>
<tr>
<td>Uganda</td>
<td>153</td>
<td>582,338</td>
<td>3806</td>
<td>0.31</td>
<td>179,884</td>
<td>1,176</td>
</tr>
<tr>
<td>Tanzania</td>
<td>179</td>
<td>1,986,760</td>
<td>11,099</td>
<td>0.23</td>
<td>451,789</td>
<td>2,524</td>
</tr>
<tr>
<td>Senegal</td>
<td>143</td>
<td>1,654,474</td>
<td>11,570</td>
<td>1.47</td>
<td>2,437,867</td>
<td>17,048</td>
</tr>
<tr>
<td>South Africa</td>
<td>88</td>
<td>27,324</td>
<td>311</td>
<td>3.31</td>
<td>90,486</td>
<td>1,028</td>
</tr>
<tr>
<td>Kenya</td>
<td>158</td>
<td>4,284,120</td>
<td>27,115</td>
<td>0.44</td>
<td>1,900,007</td>
<td>12,025</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9,291,495 kg</td>
<td></td>
<td></td>
<td>$ 5,515,155</td>
<td></td>
</tr>
</tbody>
</table>

Assessment Objective

CRS will carry out an African Indigenous Vegetables (AIVs) assessment in the Chipata/Lundazi areas of Zambia & the Chikwawa area of Malawi:

- To assess *types & availability of drought-resistant AIVs*
- To assess *households’ AIV preferences*
- To identify at least *two recipes* suitable for young children, pregnant & lactating women
- To assess *availability of AIV seeds* in local markets
Field Sites

Zambia
- MAWA Project: USAID-funded Feed the Future project (2012-2017) aiming to improve food & economic security
- Eastern Providence (Chipata & Lundazi)
- Chewa, Ngoni & Tumbuka speakers

Malawi
- UBALE project: USAID Food for Peace project (2014-2019) aiming to increase food security, improve nutrition & strengthen disaster risk
- Southern Region (Chikwawa)
- Chichewa speakers
Methodology

Qualitative Methods

- Focus group discussions
- Key Informant Interviews
- Market Vendor Interviews
- 105 total participants
 - 55 participants (Zambia)
 - 50 participants (Malawi)
Methodology

Botanical Identifications

- Market Purchases
- Informal Field Collections
- Photographs
- Local Flora Resources
- Visit to the National Herbarium & Botanical Garden of Malawi (Zomba)

Literature review of Nutritional Properties

- AVRDC
- Zambia Food Composition Database
Findings:
Key similarities- Household perceptions

Zambia & Malawi

• responded favorably to indigenous vegetables & reported that all household members consume them daily

• used as relishes alongside a traditional maize porridge

• most AIVs are consumed fresh, but are also dried and stored for year-round access

“UBALE should support the old ones too, not just the modern ones” – male participant from key informant interview

“...children love eating them; they don’t know their value but they love the taste.” – mother from focus group discussion
Findings:
Key similarities - Plant parts, types, & seed

Malawi & Zambia

- most frequently cited were leaves of cultivated plants, wild herbs/ground climbers
- wild vegetables were reported to typically grow only in the rainy season with low water requirements
- Only seeds of cultivated AIVs were collected, saved & sold on the local market
Findings: Key differences

Zambia

- 35 plants mentioned
- Mushrooms frequently cited
- Use of traditional chikwati storage ball

Malawi

- 16 plants mentioned
- General hesitancy discussing AIVs, especially those that grew wild
- Younger generations mentioned more cultivated plants
Findings

Most frequently cited leafy vegetables in Chipata and Lundazi areas

<table>
<thead>
<tr>
<th>Plant Form</th>
<th>Local Name (Chewa/Ngoni)</th>
<th>English Name</th>
<th>Scientific Name</th>
<th>Nutritional Qualities</th>
<th>Recipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild herb</td>
<td>lumanda</td>
<td>cranberry</td>
<td>Hibiscus acetosella Welw. ex Hiern</td>
<td>85 food energy (ME) cal, 13.82 g protein, 1.42 g fat, 0.55 mg calcium, 21.1 mg iron, 0.01 mg zinc, 28.93 mg vitamin C per 100 grams of boiled leaves¹</td>
<td>lumanda + soda + g. nut + tomato + salt = boil for 5 mins</td>
</tr>
<tr>
<td>wild herb</td>
<td>katate</td>
<td>hibiscus</td>
<td>Ceratotheca sesamoides Endl.</td>
<td>65 food energy (ME) cal, 5.25 g protein, 0.45 g fat, 0.63 mg calcium, 16.69 mg iron, 0.11 mg zinc, and 59.25 mg vitamin C per 100 grams of fresh leaves¹</td>
<td>katate + soda + tomato + salt = boil for 5 mins</td>
</tr>
<tr>
<td>wild herb</td>
<td>bondwe</td>
<td>false sesame</td>
<td>Amaranthus spp.</td>
<td>High: folic acid, ascorbic acid, calcium, iron</td>
<td>bondwe + salt + tomato + oil = boil for 10 mins</td>
</tr>
<tr>
<td>wild climber</td>
<td>mulozi</td>
<td>amaranth</td>
<td>Adenia gummifera (Harv.) Harms</td>
<td>Medium: Beta-carotene, vitamin E, riboflavin</td>
<td>mulozi + soda + g nuts + tomato = boil for 3-5 mins</td>
</tr>
<tr>
<td>cultivated climber</td>
<td>chibwabwa</td>
<td>monkey rope</td>
<td>Cucurbita maxima Duchesne</td>
<td>High: ascorbic acid</td>
<td>chibwabwa + salt + g. nuts + soda + tomato = boil for 5 mins</td>
</tr>
</tbody>
</table>

Findings

Most frequently cited leafy vegetables in the Chikwawa area

<table>
<thead>
<tr>
<th>Plant Form</th>
<th>Local Name</th>
<th>English Name</th>
<th>Scientific Name</th>
<th>Nutritional Qualities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivated climber</td>
<td>Nkhawni (Chichewa)</td>
<td>Pumpkin leaves</td>
<td>Cucurbita maxima Duchesne</td>
<td>High: ascorbic acid, Medium: Beta-carotene, vitamin E, riboflavin, calcium, 4.0% protein2</td>
</tr>
<tr>
<td>Wild climber</td>
<td>Punde (Chichewa)</td>
<td>Wild sweet potato leaves</td>
<td>Ipomoea eriocarpa R. Br.</td>
<td>Medium to high: ascorbic acid, Medium: Beta-carotene, vitamin E, folic acid, iron, calcium, 2.5% protein2</td>
</tr>
<tr>
<td>Wild herb</td>
<td>Bonogwe (Chichewa)</td>
<td>Amaranth</td>
<td>Amaranthus sp.</td>
<td>High: folic acid, ascorbic acid, calcium, iron, Medium: Beta-carotene, vitamin E, folic acid, iron, 2-4% protein2</td>
</tr>
<tr>
<td>Cultivated tree</td>
<td>Sangoa (Chichewa)</td>
<td>Moringa</td>
<td>Moringa sp.</td>
<td>Extremely high: ascorbic acid, Medium: calcium, Extremely high: Beta-carotene, High: vitamin E, folic acid, calcium</td>
</tr>
<tr>
<td>Cultivated climber</td>
<td>Chitambe (Chichewa)</td>
<td>Cowpea leaves</td>
<td>Vigna unguiculata (L.) Walp.</td>
<td>Medium: ascorbic acid, 3-4% protein</td>
</tr>
</tbody>
</table>

Recipe
- **Chibwabwa**: salt + g. nuts + soda + tomato = boil for 5 mins
- **Bondwe**: salt + tomato + oil = boil for 10 mins
- **Sangoa**: salt + g. nut paste + tomato = boil for 5 mins
- **Chitambe**: g. nuts + tomato = boil for 5 mins

Key Lessons Learned

• Overlap in preferred leafy vegetable species, but Zambia with larger diversity
• Need for educational activities around stigma of AIVs in Malawi
• Sodium bicarbonate potentially negative effects
• Most AIVs have known nutritional information but additional research needed
Next Steps

Agricultural Integration

1. Explore collaboration with AVRDC on AIV seed kits

2. Incorporate AIV into agricultural activities of UBALE/MAWA
 - *DINER fairs*
 - *Kitchen Gardens*

Behavior Change

1. Promote consumption & drying of nutrient rich AIVs (especially wild ones) in nutrition activities of UBALE/MAWA
 - Community-led
 - Complementary Feeding and Learning Sessions
 - Care Group

2. Caution the use of sodium bicarbonate in recipe preparation
Remaining Questions

- **Food processing**: Does any listener have experience in sodium bicarbonate use in traditional dishes? How does it influence the integrity of the nutrients, particularly given the combination of several ingredients?

- **Drying & Storage**: What are the main barriers to drying and storing leafy vegetables to encourage year-round consumption?

- **Environmental**: Given changing climate patterns, how do AIVs fit into larger discussions around food security and dietary diversity?
Acknowledgements

- We are most grateful to the mothers, fathers, market vendors, and key informants
- SARO office: Regional director, DRD/PQ, Cara Raboanarielina, Ana Maria Ferraz de Campos
- MAWA/Zambia: Emily Burrows, Ulembe Chinyemba, Erin Baldridge, Vincent Mambo, nutrition/agriculture field supervisors
- UBALE/Malawi: Debbie Shomberg, Dane Fredenburg, Mary Mpinda, Angela Tavares, Aaron Banda
- Dr. Montfort Mwanyambo from the National Herbarium of Malawi, Kew Botanical Gardens, Naturalis Biodiversity Center
- Neverending Food of Malawi
- USAID